Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

نویسندگان

  • Bing Hu
  • Xianbiao Bu
  • Weibin Ma
چکیده

To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m(-2) and 7.61 kg m(-2) day(-1) at the generation temperature of 140 °C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The energy and exergy analysis of a novel cogeneration organic Rankine power and two-stage compression refrigeration cycle

The energy crisis in recent years has led to the use of thermodynamic cycles that work based on renewable energies. Low-temperature cycles—such as organic cycles—are suitable strategies for the application of renewable energies. The present study proposes a novel cycle through the integration of a two-stage compression refrigeration cycle with a combined Rankine power and ejector refrigerat...

متن کامل

The Energy and Exergy Analysis of Integrated Hydrogen Production System Using High Temperature Steam Electrolysis with Optimized Water Path (RESEARCH NOTE)

In this research, solar-drived integrated Hydrogen production (HP) using high-temperature steam electrolysis (HTSE) is thermodynamically evaluated. This system includes an organic Rankine cycle (ORC), Rankine cycle, Brayton cycle, solar tower, and High Temperature Steam Electrolysis (HTSE). Solar energy supplies thermal energy. This heat source is applied for generating power. This energy is us...

متن کامل

Design and Thermodynamic analysis of solar air humidifier

In this paper, the cooling system of the air humidifire, completely powered by solar energy, has been designed and optimized. In the cooling system, instead of conventional compression cooling systems, the ammonia absorption refrigeration system has been used.Its design is done in a way that the performanceof the system has increased remarkably in environments with high temperature. The ammonia...

متن کامل

Off-design performance analysis of a solar-powered organic Rankine cycle

Performance evaluation of a thermodynamic system under off-design conditions is very important for reliable and cost-effective operation. In this study, an off-design model of an organic Rankine cycle driven by solar energy is established with compound parabolic collector (CPC) to collect the solar radiation and thermal storage unit to achieve the continuous operation of the overall system. The...

متن کامل

Analysis and Simulation of the Effect of Turbine Inlet Temperature on Thermodynamic Performance of the Water – Ammonia Combined Cycle

Due to the importance of power generation cycles including combined cycle, many studies have been done in recent years and many researchers have been tried to optimize these cycles by using of existing methods. In this study, the Water-Ammonia cycle is investigated in the combined-cycle of the Water-Ammonia, working dual Water-Ammonia mixture is used as the works fluid. This cycle can be used f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014